此文章來自奇摩知識+如有不便請留言告知
標題:
解不等式(組)6題
發問:
1) -2 -x > -3 3) (x+1)(x-3) > 0, (x-4)(x-5) > 0 4) (x-3)(x+4) 0 5) (x-1)? (x+6)21 (2x-5)32 (3x-2)? (3x+4) (4x2-2x+1) > 0 6) (x-1)? (x+6)21 (2x-5)32 (3x-2)? (3x+4) (4x2-2x+1)
最佳解答:
(1) -2 x > 1 Ans (1) : 1 -x > -3 Mulitply by -1, we get 2 0, (x - 4)(x - 5) > 0 Remember, "Greater" on both sides, "Smaller" in the middle, so, LS is x 3; and, RS is x 5 Ans (3) : 3 5 (4) (x - 3)(x + 4) 0 Same, so, LS is -4 1 Ans (4) : -4 0 As 4x2 - 2x + 1 is always greater than 0, and even power is always greater than or equal to zero, so the inequality equation becomes (x - 1)(x + 6)(3x + 4) > 0 and x except 5/2, 2/3, so -6 1 except 5/2, 2/3 Ans (5) : -6 5/2 (6) (x - 1)?(x + 6)21(2x - 5)32(3x - 2)?(3x + 4)(4x2 - 2x + 1)
其他解答:
1)-2-x >-3 20,(x-4)(x-5)>0 x3 x5 -1>xx>5 4)(x-3)(x+4)-41-40 [(x-1)^7][(x+6)^21][(2x-5)^32][(3x-2)^6](3x+4)(4x^2-2x+1)>0 [(x-1)^7][(x+6)^21][(2x-5)^32][(3x-2)^6](3x+4)>0 (x-1)(3x+4)>0,x1,x-6,3x-20 (x-1)(x+4/3)>0,x1,x-6,3x-20x1 6)[(x-1)^7][(x+6)^21][(2x-5)^32][(3x-2)^6](3x+4)(4x^2-2x+1)1,x-6,3x-20 (x-1)(x+4/3)1,x-6,3x-20 -4/31,x-6,x2/3 -4/3"5 no.5 and no.6: D=(-2)^2-4*4*1=-12" 0 but not -x >-3 Sol 20,(x-4)(x-5)>0 Sol (x+1)(x-3)>0=>x3 (x-4)(x-5)>0=>x5 So x0 Sol (x-3)(x+4)-40 =>x1 So -40 Sol 4x^2-2x+1 D=(-2)^2-4*4*1=-12>0 So 4x^2-2x+10 [(x-1)^7][(x+6)^21][(2x-5)^32][(3x-2)^6](3x+4)>0 (x-1)(3x+4)>0,x1,x-6,3x-20 (x-1)(x+4/3)>0,x1,x-6,3x-20x1 6) [(x-1)^7][(x+6)^21][(2x-5)^32][(3x-2)^6](3x+4)(4x^2-2x+1)0 So 4x^2-2x+1>0 [(x-1)^7][(x+6)^21][(2x-5)^32][(3x-2)^6](3x+4)(4x^2-2x+1)1,x-6,3x-20 (x-1)(x+4/3)1,x-6,3x-20 -4/31,x-6,x2/3 ─4/306CC7293C79127CE5